Webb telescope detects crucial molecule in space for the first time | CNN

Webb telescope detects crucial molecule in space for the first time

Editor’s Note: Sign up for CNN’s Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.

CNN  — 

Astronomers have detected a crucial carbon molecule in space for the first time using the James Webb Space Telescope.

The compound, called methyl cation, or CH3+, was traced back to a young star system located 1,350 light-years away from Earth in the Orion Nebula, according to NASA.

Carbon compounds are intriguing to scientists because they act as the foundation for all life as we know and understand it. Methyl cation is considered a key component that helps form more complex carbon-based molecules.

These Webb images show a part of the Orion Nebula known as the Orion Bar. It is a region where energetic ultraviolet light from the Trapezium Cluster — located off the upper-left corner — interacts with dense molecular clouds. The energy of the stellar radiation is slowly eroding the Orion Bar, and this has a profound effect on the molecules and chemistry in the protoplanetary disks that have formed around newborn stars here.

Understanding how life began and evolved on Earth could help researchers determine if it’s possible elsewhere in the universe. The highly sensitive capabilities of the Webb telescope, which views the cosmos through infrared light that is invisible to the human eye, is revealing more about organic chemistry in space.

The space observatory detected methyl cation in a protoplanetary disk, called d203-506, swirling around a young red dwarf star. These disks, largely made of gas and dust, are the leftover remnants of star formation. Planets are born in these large stellar halos, giving rise to planetary systems.

A study detailing the discovery was published Monday in the journal Nature.

The role of ultraviolet radiation

Red dwarf stars are much smaller and cooler than our sun, but the d203-506 system is still lashed with strong ultraviolet light from neighboring young, massive stars.

In most scenarios, UV radiation is expected to wipe out organic molecules, but the team actually predicted that the radiation could provide a necessary energy source that allows methyl cation to form.

After CH3+ forms, it leads to additional chemical reactions that allow more complex carbon molecules to build, even at low temperatures in space.

This image from Webb's MIRI (Mid-Infrared Instrument) shows a small region of the Orion Nebula. At the center of this view is a young star system with a protoplanetary disk named d203-506. An international team of astronomers detected a new carbon molecule known as methyl cation for the first time in d203-506.

While methyl cation doesn’t react efficiently with hydrogen, the most abundant molecule in the universe, it reacts well with a wide range of other molecules. Because of this chemical property, astronomers have long considered CH3+ an important building block of interstellar organic chemistry. But methyl cation wasn’t detected in space until now.

“This detection not only validates the incredible sensitivity of Webb but also confirms the postulated central importance of CH3+ in interstellar chemistry,” said study coauthor Marie-Aline Martin-Drumel, a researcher at the University of Paris-Saclay’s Institute of Molecular Sciences of Orsay in France, in a statement.

The researchers detected different molecules in the protoplanetary disk of d203-506 than those found in typical disks, and they didn’t detect any water, according to the study.

“This clearly shows that ultraviolet radiation can completely change the chemistry of a protoplanetary disk. It might actually play a critical role in the early chemical stages of the origins of life,” said lead study author Olivier Berné, research scientist in astrophysics at the French National Centre for Scientific Research in Toulouse, in a statement.